Effect of Structural Parameters on the Electron Capture Dissociation and Collision-Induced Dissociation Pathways of Copper(II)–Peptide Complexes

Author:

Chen Xiangfeng12,Wang Ze1,Li Wan1,Wong Y.L. Elaine1,Chan T.-W. Dominic1

Affiliation:

1. Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China

2. Shandong Academy of Sciences, Jinan, Shandong, PR China

Abstract

The gas-phase dissociation pathways of proteins/peptides are usually affected by the nature of the charge carrier and the sequence of amino acid residues. The effects of peptide structural parameters, including peptide composition, chain length and amide hydrogen, on the gas-phase dissociation of Cu(II)–model peptide complexes were explored in this study. Polyglycine peptides with flexible frames were used as probes to reduce the complexity of the system and illustrate the mechanism. Results revealed that the types of fragment ions generated in the electron capture dissociation (ECD) of Cu(II)-adducted peptides changed according to the basic amino acid residue composition. Charged or neutral tryptophan side-chain losses were observed in the collision-induced dissociation (CID) of Cu(II)–peptide complexes. Internal electron transfer between tryptophan and metal ion within the complex occurred during the CID reaction, leaving the charge-reduced Cu+ as a closed d-shell stable electron configuration. The choice of the reaction channel was then determined by the gas-phase basicity of the peptide. Amide hydrogen was critical in the formation of metalated b-/ y-ions in the ECD process as determined through mutation of the backbone amide group. Increasing the chain length suppressed the ECD of Cu-metalated peptide species. Our results indicate that the structural parameters of peptides play important roles in the gas-phase dissociation processes of Cu–peptide complexes.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3