Effects of Internal Hydrogen Bonds between Amide Groups: Protonation of Alicyclic Diamides

Author:

Witt Matthias1,Kreft Dirk1,Grützmacher Hans-Friedrich1

Affiliation:

1. Fakultät für Chemie der Universität Bielefeld, POB 10 01 31, D-33501 Bielefeld, Germany

Abstract

The proton affinity ( PA) of cyclopentane carboxamide 1, cyclohexane carboxamide 2 and their secondary and tertiary amide derivatives S1, S2, T1 and T2, was determined by the thermokinetic method and the kinetic method [ PA(1) = 888 ± 5 kJ mol−1; PA(2) = 892 ± 5 kJ mol−1; PA(S1) = 920 ± 6 kJ mol−1; PA(S2) = 920 ± 6 kJ mol−1; PA(T1) = 938 ± 6 kJ mol−1; PA(T2) = 938 ± 6 kJ mol−1]. Special entropy effects are not observed. Additionally, the effects of protonation have been studied using an advanced kinetic method for all isomers 3–7 of cyclopentane dicarboxamides and cyclohexane dicarboxamides (with the exception of cis-cyclopentane-1,2-dicarboxamide) and their bis-tertiary derivatives T3–T7 by estimating the PA and the apparent entropy of protonation Δ(Δ Sapp). Finally, the study was extended to bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxamide 8 and its bis-tertiary derivative T8, to all stereoisomers of bicyclo[2.2.1]heptane-2,3-dicarboxamide 9, their secondary and tertiary amide derivatives S9 and T9, and to endo–endo–bicyclo[2.2.1]heptane-2,5-dicarboxamide 10 and the corresponding secondary and tertiary derivatives S10 and T10. Compared with 1 and 2, all alicyclic diamides exhibit a significant increase of the PA (ΔPA) and special entropy effects on protonation. For alicyclic diamides, which can not accommodate a conformation appropriate for building a proton bridge, the values of Δ PA and Δ(Δ Sapp) are small to moderate. This is explained by ion / dipole interactions between the protonated and neutral amide group which stabilize the protonated species but hinder the free rotation of the amide groups. If any of the conformations of the alicyclic diamide allows formation of a proton bridge, Δ PA and Δ(Δ Sapp) increase considerably. A spectacular case is cis-cyclohexane-1,4-dicarboxamide 7c which is the most basic monocyclic diamide, although generation of the proton bridge requires the unfavorable boat conformation with both amide substituents at a flagpole position. A pre-orientation of the two amide groups in such a 1,4-position in 10 results in a particularly large PA of < 1000 kJ mol−1. The observation of comparable values for Δ(Δ Sapp) for linear and monocyclic diamides indicates that a major part of the entropy effects originates from freezing the free rotation of the amide groups by formation of the proton bridge. This is corroborated by observing corresponding effects during the protonation of dicarboxamides containing the rigid bicyclo[2.2.1]heptane carbon skeleton, where the only internal movements of the molecules corresponds to rotation of the amide substituents.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3