Non-Invasive Detection of Protein Content in Corn Distillers Dried Grains with Solubles: Method for Selecting Spectral Variables to Construct High-Performance Calibration Model Using near Infrared Reflectance Spectroscopy

Author:

Zhou Xingfan1,Yang Zengling1,Huang Guangqun1,Han Lujia1

Affiliation:

1. State Key Laboratory of Animal Nutrition, College of Engineering, China Agricultural University, Beijing 100083, China

Abstract

Corn distillers dried grains with solubles (DDGS), a byproduct of the bioethanol industry, is commonly used as animal feed. This paper evaluates the use of backward variable selection partial least square (BVSPLS) and genetic algorithm (GA) methods to select the spectral variables of near infrared (NIR) reflectance spectroscopy and construct high-performance calibration models of protein content in corn DDGS. The BVSPLS analysis utilised 16% of the spectral variables. Compared to the full spectrum model, the model constructed from the variables selected by the BVSPLS analysis significantly improved the accuracy of the model fit and achieved a 19% decrease in the standard error of validation ( SEP) and a 23% increase in the residual validation deviation ( RPD). The GA analysis selected 8% of the total NIR spectral variables and the model constructed from these selected variables had a fitted accuracy comparable to that of the full spectrum model. The spectral variables selected by both the BVSPLS analysis and GA analysis significantly simplified the NIR calibration model and provided better correlation between the selected spectral variables and protein content of corn DDGS. These results also have important implications for the development of a rapid, non-invasive, online analysis system to detect protein content of corn DDGS in-situ.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3