Infrared Spectroscopy—Enabling an Evidence-Based Diagnostic Surveillance Approach to Agricultural and Environmental Management in Developing Countries

Author:

Shepherd Keith D.1,Walsh Markus G.1

Affiliation:

1. World Agroforestry Centre (ICRAF), PO Box 30677-00100, Nairobi, Kenya

Abstract

Science-based approaches to agricultural and environmental management are needed to accelerate development progress in the world's poorest countries. We present a diagnostic surveillance framework modelled on medical diagnostic approaches for evidence-based management of agriculture and environment in developing countries. Infrared (IR) spectroscopy can play a pivotal role in making the surveillance framework operational, by providing a rapid, low cost and highly reproducible diagnostic screening tool. We review the wide applicability of IR spectroscopy for setting up measurement systems for the management of soils, crops, agricultural inputs, livestock health, agricultural products and water quality. IR spectroscopy is already being used in the design of soil surveillance systems, but the principles are generally applicable. A new evidence-based interpretation approach to plant analysis, combining plant and soil IR spectroscopy measurements, is proposed. Finally, an idealised design is proposed for making IR spectroscopy-based diagnostic surveillance operational in developing countries over the next ten years. Large area surveillance frameworks for agricultural and environmental problems will deploy integrated spectral indicators of soil, crop and livestock health and water quality. Spectral indicators will help to quantify risk factors associated with problems and assess intervention impacts. Smallholder farmers will have access to IR spectroscopy-based analysis of soils, crops and inputs through a network of hand-held or mobile IR spectroscopy units. Agricultural processing industries will make extensive use of IR spectroscopy on the factory floor to add value to agricultural produce and improve food safety. Regional centres of scientific and technological excellence will be required to support (i) high quality laboratory reference analyses, (ii) development of IR spectroscopy calibration databases and interpretation systems and (iii) up-grading of scientific and technical skills through training and education. Key challenges for adoption of this design include (i) building human capacity in science- and technology-based approaches, (ii) development of rugged low cost IR spectroscopy instrumentation and (iii) development of decision support systems to interpret IR spectroscopy data into management recommendations.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3