Effects of Transition Metal Ion Identity and π-Cation Interactions in Metal—Bis(Peptide) Complexes Containing Phenylalanine

Author:

Utley Brandon1,Angel Laurence A.1

Affiliation:

1. Department of Chemistry, Texas A&M University-Commerce, Texas 75429, USA

Abstract

Electrospray ionization–tandem mass spectrometry was used to study the effects of the metal ion identity and π-cation interactions on the dissociation pathways of metal–bis(peptide) complexes, where the metal is either Mn2+, Co2+, Ni2+, Cu2+ or Zn2+; and the peptide is either FGGF, GGGG, GF or GG, where G is glycine and F is phenylalanine. The [(FGGF)(FGGF – H) + M2+]+ and [(GGGG)(GGGG – H) + M2+]+ complexes dissociated by losing one FGGF or GGGG, respectively. Relative binding affinities were measured using the cross-over points, where the parent and product ions were equal in ion abundance and a normalized-collision energy scale. The results indicate the relative binding affinities for FGGF and GGGG follow the same order with respect to the transition metal ion identity: Cu2+ < Ni2+ < Mn2+ ≈ Zn2+ < Co2+ and the π-cation interactions in the FGGF complex have a measureable stabilizing effect. In contrast, the main fragmentation channels of [(GF)(GF – H) + M2+]+ and [(GG)(GG – H) + M2+]+ are loss of CO2 and 2CO2 with the [(GF)(GF – H) + M2+]+ complex also exhibiting cinnamic acid, GF, residual glycine, cinnamate and styrene loss.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3