LOCAL Regression Algorithm Improves near Infrared Spectroscopy Predictions When the Target Constituent Evolves in Breeding Populations

Author:

Davrieux F.1,Dufour D.23,Dardenne P.4,Belalcazar J.5,Pizarro M.5,Luna J.5,Londoño L.3,Jaramillo A.3,Sanchez T.5,Morante N.5,Calle F.5,Lopez-Lavalle L.A. Becerra5,Ceballos H.5

Affiliation:

1. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Qualisud, St Pierre, 97455, Reunion Island, France

2. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Qualisud, Cali, Colombia

3. Centro Internacional de Agricultura Tropical (CIAT), Harvestplus LAC, Cali, Colombia

4. Walloon Agricultural Research Centre (CRA-W), Gembloux, Belgium

5. Centro Internacional de Agricultura Tropical (CIAT), Cassava program, Cali, Colombia

Abstract

The CGIAR Harvest Plus Challenge Program began in the mid-2000s to support the genetic improvement of nutritional quality in various crops, including the carotenoids content of cassava roots. Successful conventional breeding requires a large number of segregating progenies. However, only a few samples can be quantified by high performance liquid chromatography each day for total carotenoids (TCC) and β-carotene (TBC) contents, limiting the gains from breeding. This study describes the usefulness of near infrared (NIR) spectroscopy and the efficiency of a large database coupled to a LOCAL regression algorithm to reach accurate TCC/TBC predictions on fresh cassava roots. The cassava database (6026 samples) was built over six years. TCC values ranged from 0.11 μg g−1 to 29.0 μg g−1, whereas TBC ranged from negligible values up to 20.1 μg g−1. All values were measured and expressed on a fresh weight basis. Between 2009 and 2014 increases in TCC and TBC were 86% and 122%, respectively. A comparison of calibrations using partial least squares (PLS) regression and LOCAL regression was done. The standard error of prediction were 1.82 μg g−1 for TCC and 1.28 μg g−1 for TBC using PLS model and 1.38 μg g−1 and 1.02 μg g−1, respectively, using LOCAL regression. The specificity of the data, with increasing content of the constituent of interest year after year, clearly showed the limitation of the classical partial least squares regression approach. The LOCAL regression algorithm takes advantage of large databases; this study highlighted the efficiency of this concept. NIR spectroscopy coupled to LOCAL regression led to efficient models for breeding programmes aiming at increasing carotenoids content in fresh cassava roots. NIR spectroscopy can also be used to predict other important constituents such as dry matter content and cyanogenic glucosides.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3