Quantification of Absorber through a Scattering Medium of Different Thickness Using Evanescent Light Piping

Author:

Pandozzi Fabiano1,Burns David H.1

Affiliation:

1. McGill University, 801 Sherbrooke Street West, Otto Maass Building, Room 205, Montreal, Quebec, Canada H3A 2K6

Abstract

A non-invasive method has been developed for analyte quantification in fluids surrounded by optically-scattering, opaque walls. This method is based on steady state, visible wavelength reflectance measurements made simultaneously at multiple positions on the surface of a sample. Previous work has shown that reflectance measurements contain information about underlying scattering layers in layered scattering samples. We hypothesise that similar information about an absorbing layer below a scattering layer can be obtained from evanescent wave effects. Principal component analysis showed the data to be composed of three components, which were refined by a multivariate curve resolution alternating least squares (MCR-ALS) approach with non-negativity constraints. The first component is related to the scattering layer thickness, the second is associated with analyte concentration and the third is due to a minor back reflection within the sample cell. Both MCR and stagewise multi-linear regression (SMLR) approaches were taken to estimate analyte concentration and scattering layer thickness, for samples having thicknesses between 1 mm and 8 mm. Results demonstrate that a simple experimental configuration can easily predict optical properties of unknown samples. With the adoption of a multi-wavelength approach to this method, it is expected that improved absorption coefficient (μa) estimation accuracy can be realised in a variety of application areas such as in analysis through opaque containers, in vivo measurements and in-line monitoring of reactions.

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3