Multivariate Modelling of Density, Strength and Stiffness from near Infrared Spectra for Mature, Juvenile and Pith Wood of Longleaf Pine (Pinus Palustris)

Author:

Via Brian K.1,Shupe Todd F.1,Groom Leslie H.2,Stine Michael1,So Chi-Leung2

Affiliation:

1. School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA

2. USDA Forest Service, Southern Research Station, Pineville, Louisiana, USA

Abstract

In manufacturing, monitoring the mechanical properties of wood with near infrared spectroscopy (NIR) is an attractive alternative to more conventional methods. However, no attention has been given to see if models differ between juvenile and mature wood. Additionally, it would be convenient if multiple linear regression (MLR) could perform well in the place of more complicated multivariate models. Therefore, the purpose of this paper was to model the strength, stiffness and density of mature and juvenile longleaf pine to NIR spectra with MLR and principal component regression (PCR). MLR performed almost as well as PCR when predicting density, modulus of rupture (MOR) and modulus of elasticity (MOE). Choosing wavelengths associated with wood chemistry and developing principal components gave better predictive models (PCR2) than when all NIR wavelengths were used (PCR1). Models developed from mature wood did not predict wood properties from juvenile wood adequately, suggesting that separate models are needed. However, for density prediction, the area under the spectral curve appeared to be insensitive to mature and juvenile wood differences. Five of the six wavelengths associated with MOE were also associated with MOR, perhaps accounting for how MOE and MOR might be related. For pith wood, MOE and MOR were poorly related to NIR spectra, while density was strongly correlated. This inability to predict mechanical properties in the pith-wood zone warrants attention for those manufacturers interested in using near infrared to stress rate lumber within a mill.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3