Protein—Ion Charge-State Distributions in Electrospray Ionization Mass Spectrometry: Distinguishing Conformational Contributions from Masking Effects

Author:

Gumerov Dmitry R.1,Dobo Andras1,Kaltashov Igor A.1

Affiliation:

1. Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA

Abstract

Electrospray ionization mass spectrometry (ESI-MS) is often used to monitor protein conformational dynamics in solution, for example acid unfolding, by following the changes in positive-ion charge-state distributions in response to changes of ambient conditions, for example solution pH. Deconvolution of these charge-state distributions often reveals the presence of multiple protein conformers coexisting in solution in equilibrium. The ion signal corresponding to each conformer depends on its size (which determines the average charge state of the protein ions) and heterogeneity (which determines the spread of the ion signal). In the present work, we seek to explore how the ion signal of individual protein conformers can be influenced by other factors not related to protein shape, with particular attention being paid to contributions from solution acid-base chemistry. The composition of the buffer was found to exert a significant influence on the ion signal by inducing apparent charge reduction of the protein ions. This effect was ascribed to protein-base (anion) complex formation in solution followed by dissociation of the neutral conjugated acid from the complex in the gas-phase. The resulting shift in the charge-state distribution occurs in the pH range from p Ka to approximately (p Ka −1.5) and is induced by the elevated concentration of the anion in solution. On the other hand, intrinsic charges on the protein in solution have been shown to have no effect on the appearance of the charge-state distributions, lending further credibility to the notion that protein shape is the only structural determinant of the ion signal in ESI-MS.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3