Prediction of Chemical Composition in Sunflower Whole Plant and Silage (Helianthus Annus L.) by near Infrared Reflectance Spectroscopy

Author:

Fassio A.1,Gimenez A.1,Fernandez E.1,Martins D. Vaz1,Cozzolino D.1

Affiliation:

1. Instituto Nacional de Investigación Agropecuaria, INIA La Estanzuela-Colonia, Ruta 50, km 11, CC 39173, Uruguay, South America

Abstract

The aim of this study was to investigate the potential use of near infrared (NIR) reflectance spectroscopy to predict chemical composition in both sunflower whole plant (WPSun) and sunflower silage (SunS). Samples of both WPSun ( n = 73) and SunS ( n = 50) were analysed by reference method and scanned in reflectance using a NIR monochromator instrument (400–2500 nm). Calibration models were developed between NIR data and reference values for dry matter (DM), crude protein (CP), ash, acid detergent fibre (ADFom), neutral detergent fibre (aNDFom), in vitro organic matter digestibility (OMD), ether extract (EE) and pH using partial least squares regression (PLS). Due to the limited number of samples full cross-validation was used to test the calibration models. The best correlations (R 2cal) and lowest standard errors in cross-validation (SECV) were obtained for DM (R 2cal > 0.82, SECV: 27.0 and 35.8 g kg−1), CP (R 2cal> 0.85, SECV: 9.9 and 10.1 g kg−1) and ash (R2cal> 0.85, SECV 11.2 and 8.2 g kg−1) in both WPSun and SunS samples, respectively. For ADFom, aNDFom and OMD the calibrations were considered to be poor (R 2cal < 0.85). In SunS samples a good correlation was found for EE (R 2cal = 0.94, SECV: 15.3 g kg−1).

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3