Hyperspectral near Infrared Image Analysis of a Phenol Formaldehyde Resin Curing Reaction

Author:

Lillhonga Tom1,Dahlbacka John1,Geladi Paul2

Affiliation:

1. Novia University of Applied Sciences, Wolffskavägen 33, FI-65200 Vasa, Finland

2. Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden

Abstract

In the production of sandpaper, a phenol formaldehyde polymer bonds the abrasive material to a backing material made of paper or a textile. The reaction takes place at elevated temperatures (90–120°C) for a long time (at least eight hours) and is thereby a very energy-demanding process step. A possible future application would be to use near infrared (NIR) hyperspectral imaging (1000–2498 nm) for (1) monitoring the curing reaction and determining an end point for it and (2) for identifying in homogeneous regions with low adhesion in the final product. A feasibility study was carried out on four series of resin-coated backing materials without abrasives. These were imaged at half hour intervals for eight hours of curing using a NIR line scan imager. In order to analyse the influence of the backing material on the net NIR signal from resin-coated samples, spectra of the backing material (paper, textile) were also collected using a moving grating NIR spectrometer (1100–2498 nm). Results from principal components analysis of the hyperspectral images indicated that the reaction was stabilised after five to six hours, although it continued slowly for at least 16 more hours. A relevant question was when to finish the heating (curing) and still obtain a final product of high quality. Partial least squares regression models for predicting the curing time were thus also evaluated. A calibration made on image mean spectra was used for predicting the curing time of each pixel in the full set of hyperspectral images. The predicted images showed the curing progress, in homogeneous regions where the reaction had progressed to a slower extent and other physical abnormalities (for example air bubbles). Pixel prediction distribution analysis of the images was found useful for determining the significant number of components of the proposed regression models.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3