Efficiency of Trypsin Digestion for Mass-Spectrometry-Based Identification and Quantification of Oxidized Proteins: Evaluation of the Digestion of Oxidized Bovine Serum Albumin

Author:

Gouveia Duarte D.1,Silva André M.N.12,Vitorino Rui1,Domingues M. Rosário M.1,Domingues Pedro1

Affiliation:

1. Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

2. REQUIMTE/Departmento de Química e Bioquimica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal

Abstract

In bottom-up proteomics approaches, the enzymatic proteolysis step before mass spectrometry (MS) analysis is of crucial importance, as only the efficient digestion of the protein will ensure its accurate quantification. The structural and chemical alterations occurring upon protein oxidation may decrease the efficiency of trypsin digestion, compromising the ensuing MS analysis. Herein, the efficiency of the trypsin digestion of oxidized bovine serum albumin (BSA) was assessed by protein-sequence coverage and the exponentially modified protein abundance index (emPAI) algorithm, allowing a comparison of protein abundance in samples with different levels of oxidation. Despite the extensive oxidation induced to BSA, verified by analysis of protein carbonyls, no significant difference in the yield of tryptic peptides from oxidized samples could be observed by nano-high-performance liquid chromatography (HPLC) and nano-HPLC–electrospray ionization–MS analysis. After a database search, similar protein-sequence coverage rates were obtained for both treated and control samples. Thus, exponentially modified protein abundance index scores confirmed that, regardless of being oxidized, the same amount of BSA was present in the sodium dodecyl sulfate/polyacrylamide gel electrophoresis bands excised for digestion. The obtained results show that the digestion of the control and oxidized samples were similar, leading to the conclusion that in-gel proteolysis is not a main hindrance for the identification and quantification of oxidized proteins by MS.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3