The Unimolecular Chemistry of Protonated and Deprotonated 2,2-Dinitroethene-1,1-Diamine (FOX-7) Studied by Tandem Mass Spectrometry and Computational Chemistry

Author:

Žabka Ján1,Šimková Ludmila1,Jalový Zdeněk2,Polášek Miroslav1

Affiliation:

1. J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i., Dolejškova 2155/3, 182 23 Praha 8, Czech Republic

2. University of Pardubice, Faculty of Chemical Technology, Institute of Energetic Materials, Studentská 95, 532 10 Pardubice, Czech Republic

Abstract

2,2-Dinitroethene-1,1-diamine (FOX-7) was studied by means of electrospray ionization (ESI) and chemical ionization (CI) mass spectrometry in both positive and negative ion mode. Detailed mechanisms of unimolecular fragmentations of protonated and deprotonated FOX-7 were investigated using high- and low-energy collision-induced dissociation (CID) mass spectrometry, neutral fragment reionization mass spectrometry and quantum chemistry calculations. In deprotonated FOX-7, elimination of the carbodiimide molecule was identified as the energetically most favored fragmentation channel, closely resembling the base hydrolysis of FOX-7. The dinitromethanide ion is formed during this fragmentation as revealed by comparison with CID mass spectra of an isobaric ion prepared by the ESI of authentic sodium dinitromethanide. The proton affinity of FOX-7 was estimated as 855 kJ mol−1 by high-accuracy quantum chemistry calculations. This value corresponds to protonation at the C-2 position, though the oxygen-protonated tautomer was found to be nearly isoenergetic in the gas phase. In acetonitrile, the nitro group-protonated FOX-7 was found to be significantly less stable then its C-2 tautomer. These theoretical findings are clearly reflected in differences in fragmentations of ESI- and CI-generated [M + H]+ ions. Interestingly, the consecutive losses of OH and NO2 radicals instead of a whole HNO3 molecule were found to account for the most abundant fragment ion in the positive ESI CID mass spectra. In the CI-generated [M + H]+ and [M+D]+ ions, substantial internal energy effects upon the CID were observed.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3