Rapid Analysis of Whole Blood and Blood Serum Using near Infrared Spectroscopy

Author:

Domján Gyula1,Kaffka Károly J.2,Jákó János M.1,Vályi-Nagy István T.1

Affiliation:

1. 1st Department of Medicine, Imre Haynal University of Health Sciences, Szabolcs u. 35, H-1135 Budapest, Hungary, Fax: 36-1-129-1206

2. Department of Food Physics, University of Horticulture and Food Industry, Ménesi ut 45, H-1118 Budapest, Hungary

Abstract

In the present study we describe the relationship between laboratory values obtained with routinely used laboratory analytical methods and near infrared (NIR) spectral data of 126 whole blood and 228 blood serum samples. Spectra were measured with a SPECTRALYZER 1025 (PMC) computerised research analyser. The relationship among laboratory data and values of the second derivative of the log (1/ R) spectra measured at different wavelengths was determined by multiple linear regression (MLR) using three and four term linear summation equations, principal component regression (PCR) and partial least-squares (PLS) regression methods. Along with examples for qualitative detection of protein and lipid in human sera, as well as distinction of albumin and globulin dissolved in physiological saline solution, we describe mathematical models and evaluate their performance for the determination of protein and beta-lipoprotein (β-LP) content of serum as well as oxygen saturation and carbon dioxide pressure in whole blood. Validation of our results yielded a standard error of performance (SEP) of 2.47 g L−1 for protein content and 0.79 TU for β-LP content in blood serum, whereas SEP values of 5.41% for oxygen saturation and 5.27 mm Hg for carbon dioxide pressure in whole blood were found. Our results presented in this preliminary study indicate that NIR measurements can be related to analytical data of whole blood and serum. NIR spectroscopy is a rapid, accurate, cost effective method for determining quality parameters of whole blood and serum and might be a promising new tool in the field of automated clinical laboratory analysis.

Publisher

SAGE Publications

Subject

Spectroscopy

Reference27 articles.

1. Gönczy J.L., Horváth L., Kaffka K.J. and Nádai B.T., Composition Control by the New “Measurement Alteration” Method. IMEKO V, World Congress Preprint, Versailles, France B-201, pp. 1–4 (1970).

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3