Visualising Chemical Composition and Reaction Kinetics by the near Infrared Multispectral Imaging Technique

Author:

Tran Chieu D.1

Affiliation:

1. Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA

Abstract

A new multispectral imaging spectrometer which is capable of simultaneously recording spectral images in the visible and near infrared has been developed. In this instrument, an acousto-optic tunable filter (AOTF) is used to diffract an unpolarised incident light into two diffracted beams with orthogonal polarisation. One of the beams is detected by a silicon camera for the visible region while the other is detected in the near infrared (NIR) region (from 1000 to 1700nm) with an NIR camera. The imaging spectrometer is sensitive, inexpensive and field deployable because it is based on a camera using the recently available InGaAs focal plane arrays which are low-cost and can be sensitively operated at room temperature. The imaging spectrometer was used for measurements which previously were not possible. These include the kinetic determination of curing of an epoxy resin by amine, and the detection of reaction products from solid-phase peptide synthesis. Rates of reactions between epoxy and amine were found to be very inhomogeneous. Because of this kinetic inhomogeneity, differences in the degrees of cure at different positions within the sample can be as high as 37% when data from only a single pixel were used for calculation. The inhomogeneity was not observed if the average of a large number of pixels was used. The NIR imaging spectrometer was also used for the kinetic determination and identification of products formed during the solid phase peptide synthesis of glycine, alanine and valine mediated by aminomethylstyrene resin beads. Because this NIR imaging spectrometer can measure spectra at different positions within a sample, it was used for the first demonstration in which reactions of three different solid-phase peptide syntheses (in a three-compartment cell) were simultaneously monitored. Since relatively good spectra can be obtained by using data recorded by a single pixel and because the NIR camera has 240×320 pixels, this NIR multispectral imaging technique is not limited to three-compartment cell used in this study but rather can be used as the detection method for solid-phase peptide synthesis in combinatorial chemistry.

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3