Determination of Chemical and Biological Properties of Composts Using near Infrared Spectroscopy

Author:

Michel Kerstin1,Bruns Christian2,Terhoeven-Urselmans Thomas1,Kleikamp Bernd2,Ludwig Bernard1

Affiliation:

1. Department of Environmental Chemistry, University of Kassel, D-37213 Witzenhausen, Germany

2. Department of Organic Farming and Cropping, University of Kassel, D-37213 Witzenhausen, Germany

Abstract

Successful use of compost to maintain plant health and soil fertility requires consistent monitoring of compost quality. For this purpose, near infrared (NIR) spectroscopy might be a useful alternative to standard procedures which are often time-consuming and laborious. Ninety-eight yard-waste compost samples were analysed by conventional methods and NIR spectroscopy. Reference analysis included the determination of age, organic C (Corg) and total N (Nt) contents, C/N ratio, microbial biomass (Cmic), the ratio of Cmic to organic C (Cmic/Corg), basal respiration, metabolic quotient (qCO2), hydrolysis of fluorescein diacetate (FDA–HR), specific enzyme activity, i.e. FDA–HR related to Cmic, and suppression of pathogens. All samples were scanned in the visible light and near infrared regions (400–2500 nm). Cross-validation equations were developed using the whole spectrum (first and second derivative) and a modified partial least-square regression method. NIR predicted basal respiration and age successfully [ratio of standard deviation and standard error of cross-validation ( RPD) was 4.3 or 2.9, respectively]. All other properties, i.e. Corg and Nt contents, C/N ratio, Cmic, Cmic/Corg, qCO2, FDA–HR, specific enzyme activity and suppression of pathogens at an inoculation level of 5‰ related to rating or fresh weight, respectively, were predicted with moderate success (1.4 ≤ RPD ≤ 2.0). However, the coefficients of determination for specific enzyme activity and suppression of pathogens related to fresh weight were rather low ( r2 = 0.49 and 0.47, respectively). The results presented indicate that NIR spectroscopy is able to determine important compost quality parameters. However, further research is needed concerning the basis of and limitations for the determination of specific enzyme activity and suppressiveness by NIR spectroscopy.

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3