Application of hyperspectral imaging and chemometrics for classifying plastics with brominated flame retardants

Author:

Caballero Daniel1ORCID,Bevilacqua Marta2ORCID,Amigo José3ORCID

Affiliation:

1. Chemometrics and Analytical Technology, Department of Food Science, Faculty of Science, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark and Computer Science Department, Research Institute of Meat and Meat Product (IproCar), University of Extremadura, Av/ Ciencias S/N, ES-10003, Cáceres, Spain

2. Chemometrics and Analytical Technology, Department of Food Science, Faculty of Science, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark.

3. Chemometrics and Analytical Technology, Department of Food Science, Faculty of Science, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark.. jmar@food.ku.dk

Abstract

Most plastics need to incorporate flame retardants to meet fire safety standards requirements. The amount and the type of flame retardants can differ, so that in waste plastics a large variety of polymers and flame retardants can be found. The recycling of plastics containing flame retardants is increasing. However, only plastics of the same polymer type and the same additive content can be recycled together. Three models based on different chemometrics techniques applied to hyperspectral imaging in the near infrared range were developed [partial least square-discriminant analysis, decision tree (DT) and hierarchical model (HM)]. Optimal results were obtained for all classification techniques. HM shows the highest error at all levels due to the noisy spectra of the black plastics. However, DT classification gave outstanding results, considering that the sensitivity was higher than 0.9 in all cases. Thus, the application of DT with hyperspectral imaging could be used to sort plastic samples with respect to the type of polymer and the flame retardant used with a high degree of accuracy in an automated way. These findings are highly valuable for the plastic and waste management industries.

Publisher

IM Publications Open LLP

Subject

Spectroscopy,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3