Author:
GÖNÜL BİLGİN Nazmiye,EREN Melis
Publisher
Sinop Universitesi Fen Bilimleri Dergisi
Reference16 articles.
1. SN, Bernstein, Démostration du théoréme de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow (2) 13, 1-2,1912.
2. Karaisa, A. (2016). On the approximation properties of bivariate (p,q)- Bernstein operators, arXiv:1601.05250.
3. Mursaleen, M., Ansari, K.J., & Khan, A. (2015). On (p,q)-analogue of Bernstein Operators, Applied Mathematics and Computation, 266, 874-882, (Erratum: Appl. Math. Comput. (2016), 278, 70-71. https://doi.org/10.1016/j.amc.2016.02.008.
4. Mursaleen, M., Ansari, K.J., & Khan, A. (2016). Some approximation results by (p,q)-analogue of Bernstein-Stancu Operators, Applied Mathematics and Computation, 264, 392-402, https://doi.org/10.1016/j.amc.2015.03.135.
5. Mursaleen, M., Nasiruzzaman M.& A. Nurgali, (2015). Some approximation results on Bernstein-Schurer operators defined by (p, q)-integers”, J. Inequal. Appl., Article No. 249, https://doi.org/10.1186/s13660-015-0767-4.