Melaminin Yerinde Polimerizasyonu ile Grafit Katmanlarının Genişletilmesi Üzerine Bir Çalışma
Abstract
Graphene, renowned for its honeycomb lattice structure formed by densely packed sp2 hybridized carbon atoms, possesses exceptional electronic, thermal, chemical, and mechanical properties. The van der Waals-coupled graphene layers give rise to the well-known AB stacking, forming graphite. Despite the existence of several methods for graphite production, the production of graphene on a large scale remains challenging due to the lack of efficient techniques and the introduction of structural defects during the production process. Exfoliated graphite (EG), a potential solution, is typically derived from the thermal treatment of graphite intercalation compounds (GICs). Melamine, notably displaying significant expansion properties at low temperatures, has been used as an intercalation compound in limited studies. This study investigates the potential of melamine to induce the expansion of graphene layers when incorporated into graphite and subjected to thermal treatment. Raman and X-ray diffraction analyses were employed to assess structural changes.
Publisher
Sinop Universitesi Fen Bilimleri Dergisi
Reference26 articles.
1. Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y. & Qiu, J. (2012). The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 50, 3267–73. https://doi.org/10.1016/j.carbon.2011.12.005 2. Partoens, B. & Peeters, F. M. (2006). From graphene to graphite: Electronic structure around the K point. Physical Review B - Condensed Matter and Materials Physics, 74, 1–11. https://doi.org/10.1103/PhysRevB.74.075404 3. Pei, S. & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50, 3210–28. https://doi.org/10.1016/j.carbon.2011.11.010 4. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun'Ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, C. & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563-568. https://doi.org/10.1038/nnano.2008.215 5. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. & Ruoff R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 3906-3924. https://doi.org/10.1002/adma.201001068
|
|