DUCTILITY FACTOR OF REINFORCED CONCRETE FRAME WITH WEAK BEAM-COLUMN JOINT

Author:

Ullah Inayat1,Ahmad Muhammad Ejaz1,Ahmad Naveed1,Pervez Saima1,Abbas Syed Qaisar1

Affiliation:

1. University of Engineering and Technology, Peshawar, Pakistan

Abstract

Code requirements are usually fulfilled during the design of a building. On the other hand, reinforced concrete (RC) frames (particularly in the developing regions of the world) are found deficient due to unregulated constructions. Majority of such deficient structures lack shear reinforcement in beam-column joints. Collapse of these deficient buildings (as a result of limited ductility) triggered many socio-economic and human losses which is evident from recent earthquake disasters. This paper presents an experimental study which was conducted on a 1:4 reduced scale three-storey RC special moment resisting frame (SMRF) lacking shear reinforcement in the beam-column joints. The lack of confinement bars causes shear hinging of joints that reduces the displacement ductility of the frame. Shake-table tests were conducted on test model that was subjected to acceleration time history of 1994 Northridge earthquake, having a peak ground acceleration of 0.57g. The acceleration was linearly scaled to multiple levels and to sinusoidal base excitations of various frequencies and displacements. Moderate to severe damage at each storey level was observed in the joint panels due to the lack of lateral reinforcing ties in the joints. The data obtained from shake table tests were processed and analysed to develop a lateral force-deformation capacity curve, which was bi-linearized as an elasto-plastic curve to compute various response parameters of frame. The ductility factor (Rμ) of the tested model was found to be equal to 1.95, which is thirty-five percent less than the code recommended value of Rμ for RC SMRF structures.

Publisher

NED University of Engineering and Technology

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3