Design of magnetic field sensor with software for a wide range of applications

Author:

Kalibek RuslanORCID,Sopyryaeva DariaORCID

Abstract

This paper outlines a highly efficient wirelessly magnetic field-based information transmission method, enabling real-time data acquisition. Emphasizing stringent demands on magnetic devices for high sensitivity across a wide range of field strengths, it highlights the need for rapid response times and minimal power consumption. The work introduces a prefabricated magnetic sensor programmed on an Arduino board using Hall’s Effect. This principle exploits electron transfer within a conductor under a magnetic field, inducing a transverse potential difference. Meticulously chosen solid-state materials and geometries generate detectable pulses, subsequently amplified for measuring various magnetic field components. Operating within a voltage range of 2.7-6.5V, aligned with the Arduino's 5V standard, the sensor demonstrates zero signal levels at 2.25-2.75V. Sensitivity ranges from 1.0-1.75 mV/gauss, mandating pre-calibration for accuracy, facilitated by a pre-calibration function or reset button. Output voltage ranges from 1.0-4.0V when powered by 5V, suitable for analog-to-digital conversion. With a minimum measurement range of ±650 gauss, typically extending to ±1000 gauss, and a swift response time of 3 ms, the sensor allows measurements up to tens of kHz. Operating currents between 6-10 mA are suitable for battery-powered applications, while a temperature-induced error of 0.1%/°C equates to 3 mT. Notably, the sensor measures magnetic fields along and perpendicular to the axis. To enhance accessibility and accuracy, a specialized Python-based software tool has been developed, featuring automatic sensor identification. This work encapsulates the paper's focus on advancing magnetic field measurement technology with practical implications for diverse applications.

Publisher

Technobius

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3