Abstract
This paper outlines a highly efficient wirelessly magnetic field-based information transmission method, enabling real-time data acquisition. Emphasizing stringent demands on magnetic devices for high sensitivity across a wide range of field strengths, it highlights the need for rapid response times and minimal power consumption. The work introduces a prefabricated magnetic sensor programmed on an Arduino board using Hall’s Effect. This principle exploits electron transfer within a conductor under a magnetic field, inducing a transverse potential difference. Meticulously chosen solid-state materials and geometries generate detectable pulses, subsequently amplified for measuring various magnetic field components. Operating within a voltage range of 2.7-6.5V, aligned with the Arduino's 5V standard, the sensor demonstrates zero signal levels at 2.25-2.75V. Sensitivity ranges from 1.0-1.75 mV/gauss, mandating pre-calibration for accuracy, facilitated by a pre-calibration function or reset button. Output voltage ranges from 1.0-4.0V when powered by 5V, suitable for analog-to-digital conversion. With a minimum measurement range of ±650 gauss, typically extending to ±1000 gauss, and a swift response time of 3 ms, the sensor allows measurements up to tens of kHz. Operating currents between 6-10 mA are suitable for battery-powered applications, while a temperature-induced error of 0.1%/°C equates to 3 mT. Notably, the sensor measures magnetic fields along and perpendicular to the axis. To enhance accessibility and accuracy, a specialized Python-based software tool has been developed, featuring automatic sensor identification. This work encapsulates the paper's focus on advancing magnetic field measurement technology with practical implications for diverse applications.