Induction of bactericidal activity by degradable implants

Author:

Popkov A. V.1ORCID,Kononovich N. A.1ORCID,Popkov D. A.1ORCID,Godovykh N. V.1ORCID,Tverdokhlebov S. I.2ORCID,Bolbasov E. N.2ORCID,Stogov M. V.1ORCID,Kireeva E. A.1ORCID,Gorbach E. N.1ORCID,Litvinov Yu. Yu.3ORCID

Affiliation:

1. Ilizarov National Medical Research Centre for Traumatology and Orthopedics

2. School of Nuclear Science & Engineering, Tomsk Polytechnic University

3. All-Russian Research Institute of medicinal and aromatic plants

Abstract

Introduction The problem of implant-associated infections is far from being solved in arthroplasty, osteosynthesis of fractures, and spinal pathology. The development of biodegradable implants with bioactive properties is a promising direction. The purpose of this study was to evaluate the in vitro bactericidal activity of implants made from a degradable material polycaprolactone (PCL) impregnated with hydroxyapatite and an antibiotic.Material and methods To study antibiotic availability, antibiotic-impregnated PCL cylindrical samples (n = 6) were incubated in distilled water at 37 °C. To evaluate the antibacterial properties, samples in the form of porous disks were used: control samples from PCL; 1) PCL samples coated with antibiotic and hydroxyapatite; 2) PCL samples coated only with antibiotic; 3) PCL samples coated only with hydroxyapatite; (n = 6 for each type of tested samples). The disk diffusion method was used to determine the sensitivity of microorganisms to antibiotics. The microbial strains used were S. aureus ATCC 25923, P. aeruginosa ATCC 27853 and E. coli ATCC 25922. Test microorganisms were cultivated on beef peptone agar (MPA) at 37 °C for 24 hours. Quantitative data were subjected to statistical processing.Results It was determined that 82.6 % of the antibiotic was released during the first day of incubation and 8.2 % on the second day. Control samples did not show a bactericidal effect. Samples 3 showed an antibacterial effect against E. coli culture. Samples 1 and 2 equally demonstrated significant inhibition of the growth of S. aureus, P. aeruginosa, and E. coli.Discussion Most of the antibiotic is released into the hydrolyzate during the first two days of incubation. Porous implants made of PCL and impregnated with an antibiotic have pronounced antimicrobial activity against the most common gram-negative and gram-positive bacteria that cause purulent complications in surgical practice. Nanostructured hydroxyapatite on the surface of the implant does not reduce bactericidal activity.Conclusions Porous polycaprolactone implants filled with hydroxyapatite and antibiotics are targeted to stimulate bone regeneration and simultaneously ensure antimicrobial activity. Nanostructured hydroxyapatite on the implant surface does not decrease bactericidal activity.

Publisher

Russian Ilizarov Scientific Centre Restorative Traumatology and Orthopaedics

Subject

Orthopedics and Sports Medicine,Surgery

Reference30 articles.

1. Luo Y, Wang J, Ong MTY, et al. Update on the research and development of magnesium-based biodegradable implants and their clinical translation in orthopaedics. Biomater Transl. 2021;2(3):188-196. doi: 10.12336/biomatertransl.2021.03.003

2. Rokkanen PU, Böstman O, Hirvensalo E, et al. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials. 2000;21(24):2607-13. doi: 10.1016/s0142-9612(00)00128-9

3. Heye P, Matissek C, Seidl C, et al. Making Hardware Removal Unnecessary by Using Resorbable Implants for Osteosynthesis in Children. Children (Basel). 2022 M;9(4):471. doi: 10.3390/children9040471

4. Agadzhanyan VV, Pronskikh AA, Demina VA, Gomzyak VI, Sedush NG, Chvalun SN. Biodegradable implants in orthopedics and traumatology. Our first experience. Polytrauma. 2016;(4):85-93. (In Russ.)

5. Haseeb M, Butt MF, Altaf T, Muzaffar K, Gupta A, Jallu A. Indications of implant removal: A study of 83 cases. Int J Health Sci (Qassim). 2017;11(1):1-7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3