Tibial lengthening over a bioactive degradable intramedullary implant: a case report

Author:

Popkov A. V.1ORCID,Gorbach E. S.1,Mamedov U. F.1,Stepanov R. V.1

Affiliation:

1. Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Abstract

Introduction Long duration of distraction osteosynthesis remains an unsolved problem. One of the promising ways to stimulate reparative regeneration of bone tissue is the technology of combined osteosynthesis with intramedullary elastic reinforcement with titanium wires coated with hydroxyapatite. A significant drawback of this combined distraction osteosynthesis is the planned removal of intramedullary wires several months after disassembling the Ilizarov apparatus.The purpose of this work is to demonstrate the possibility of stimulating reparative regeneration and reducing the duration of distraction osteosynthesis using an intramedullary degradable implant with bioactive filling.Methods We present the first in clinical practice case of surgical leg lengthening in a female 10-year-old patient using the Ilizarov apparatus an intramedullary degradable implant made of polycaprolactone (PCL) saturated with hydroxyapatite to stimulate reparative regeneration in the tibia. Monthly radiographic monitoring of the process of reparative regeneration of bone tissue was supplemented by computed tomography after disassembling the Ilizarov apparatus.Results The process of lengthening the tibia was accompanied by pronounced formation of a bone “sleeve” around the implant, which was directly connected to the endosteum of the tibia. The density of bone substance in the medullary canal reached 496.6 HU. The cortical layer of the tibia in the elongation zone increased to 4 mm, and its density was equal to 1288.8 HU.Discussion Leg lengthening of 4 cm was achieved along with simultaneous correction of valgus recurvatum bone deformity at IO = 15 days/cm, that is two times shorter than the generally accepted excellent IO in distraction osteosynthesis according to Ilizarov.Conclusions Biodegradable polycaprolactone implants saturated with hydroxyapatite might be not inferior to titanium wires coated with hydroxyapatite in regard to the degree of osteoinduction and do not require repeated surgical intervention to remove them.

Publisher

Russian Ilizarov Scientific Centre Restorative Traumatology and Orthopaedics

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3