Self-Consuming Generative Models go MAD

Author:

Casco-Rodriguez Josue,Alemohammad Sina,Luzi Lorenzo,Imtiaz Ahmed,Babaei Hossein,LeJeune Daniel,Siahkoohi Ali,Baraniuk Richard

Abstract

Seismic advances in generative AI algorithms have led to the temptation to use AI-synthesized data to train next-generation models. Repeating this process creates autophagous (“self-consuming”) loops whose properties are poorly understood. We conduct a thorough analysis using state-of-the-art generative image models of three autophagous loop families that differ in how they incorporate fixed or fresh real training data and whether previous generations' samples have been biased to trade off data quality versus diversity. Our primary conclusion across all scenarios is that without enough fresh real data in each generation of an autophagous loop, future generative models are doomed to have their quality (precision) or diversity (recall) progressively decrease. We term this condition Model Autophagy Disorder (MAD) and show that appreciable MADness arises in just a few generations.

Publisher

Journal of LatinX in AI Research

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. InvertibleNetworks.jl: A Julia package for scalable normalizing flows;Journal of Open Source Software;2024-07-30

2. Fairness Feedback Loops: Training on Synthetic Data Amplifies Bias;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

3. Preserving Linguistic Diversity in the Digital Age: A Scalable Model for Cultural Heritage Continuity;Journal of Contemporary Language Research;2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3