Etanercept Mitigated Renal Injury in Male Rats Undergoing Global Renal Ischemia-Reperfusion

Author:

Abbas Ashwaq Najemaldeen, ,Mahdi Fatimah Mohammed Saeed,Abed Aumaima Tariq,Hassan Saif M., , ,

Abstract

The kidneys are vulnerable to injury from ischemia-reperfusion (IR), a process that triggers inflammation and apoptosis, primarily mediated by tumor necrosis factor (TNF)-alpha. Numerous studies have investigated renal damage in this context. Etanercept, a soluble receptor for TNF-alpha, has demonstrated anti-inflammatory and anti-apoptotic properties. This study aims to assess the potential of etanercept in mitigating experimental renal IR injury and its capacity to protect against widespread renal ischemia/reperfusion injury. Methods: Male Sprague-Dawley (SD) rats were classified into four groups: sham, DMSO-treated, etanercept-treated, DMSO-treated IR, and etanercept-treated IR groups. After 24 hours following IR injury, renal levels of TNF-alpha and TLRs (Toll-like receptors) were assessed using ELISA and IHC methods, respectively. Histopathological analysis was employed to quantify the extent of renal cell injury. Results: Etanercept treatment significantly lowered tissue levels of TNF-alpha and TLRs in IR-damaged rats compared to DMSO-treated IR rats. Kidneys of DMSO-treated IR rats exhibited substantially elevated levels of TNF-alpha and TLRs when compared to DMSO-treated sham rats. Conversely, etanercept-treated IR rats displayed significantly reduced levels of TNF-alpha and TLRs compared to DMSO-treated IR rats. Pre-treatment with etanercept significantly alleviated the extent of damage in IR-injured rats compared to the control and DMSO groups. Etanercept further promoted the downregulation of TLRs and TNF-alpha, thereby enhancing resistance to renal damage during IR. Conclusion: In conclusion, etanercept shows promise in providing protection against renal ischemia-reperfusion injury by mitigating inflammation and apoptosis, as evidenced by reductions in TNF-alpha and TLR levels. This suggests its potential as a therapeutic intervention to mitigate renal damage resulting from ischemia-reperfusion injury.

Publisher

Vital Signs Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3