Cavitation Noise Signal Classification of Hydroturbine Based on Improved Multi-Scale Symbol Dynamic Entropy

Author:

Kang Ziyang,Liu Zhiliang,Guo Xinnian,Liu Liu

Abstract

Cavitation is a phenomenon in the operation of hydroturbine, which is related to the operation efficiency and service life of the turbine. To identify both the cavitation noise signal and the non-cavitation noise signal, prevent damage as soon as possible, and avoid irreversible damage to the hydroturbine, a new paradigm based on multi-scale information entropy is proposed in this paper. The new proposed classification model combines improved multi-scale symbol dynamic entropy (IMSDE) and least square support vector machine (LSSVM). Improved multi-scale symbol dynamic entropy is utilized to learn features from the cavitation noise signal, and then the classifier of the least square support vector machine is used to classification. Multi-scale sample entropy (MSE), multi-scale permutation entropy (MPE) and multi-scale symbol dynamic entropy (MSDE) are selected as the contrast algorithms. According to the experimental results of four different operating conditions, IMSDE has the highest recognition rate. The average recognition rate of IMSDE is higher than that of MSDE, MSE and MPE. There is no significant difference in computational efficiency of IMSDE, MSDE and MPE. In conclusion, the IMSDE method proposed in this paper is superior to MSDE, MSE and MPE, for meeting the requirements of cavitation noise signal classification.

Publisher

International Institute of Acoustics and Vibration (IIAV)

Subject

Visual Arts and Performing Arts,Communication,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Cardiology and Cardiovascular Medicine,Molecular Biology,Molecular Biology,Structural Biology,Catalysis,General Engineering,Physical and Theoretical Chemistry,Process Chemistry and Technology,Catalysis,Process Chemistry and Technology,Biochemistry,Bioengineering,Catalysis,Cell Biology,Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3