A Fault Diagnosis Approach for Rolling Bearing Based on Wavelet Packet Decomposition and GMM-HMM

Author:

Huang Liangpei,Huang Hua,Liu Yonghua

Abstract

Considering frequency domain energy distribution differences of bearing vibration signal in the different failure modes, a rolling bearing fault pattern recognition method is proposed based on orthogonal wavelet packet decomposition and Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). The orthogonal three-layer wavelet packet decomposition is used to obtain wavelet packet decomposition coefficients from low frequency to high frequency. Rolling bearing raw vibration signals are firstly decomposed into the wavelet signals of different frequency bands, then different frequency band signals are reconstructed respectively to extract energy features, which form feature vectors as the model input of GMM-HMM. A large number of samples are trained to get model parameters for different bearing faults, then several groups of test data are adopted to verify GMM-HMMs so different fault types of rolling bearings are recognized. By calculating the current state appearance probability of monitoring data in GMM-HMMs, different failure patterns are recognized and evaluated from the maximum probability. Similarly, we establish GMM-HMMs for different grade fault samples and evaluated the performance degradation state. Test results show that the proposed fault diagnosis approach can identify accurately the fault pattern of rolling bearings and evaluate performance degradation of bearings.

Publisher

International Institute of Acoustics and Vibration (IIAV)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3