Detection and Quantification of Asymmetrically Located Structural Damages by Mode Converted Guided Waves Using Piezo Electric Elements

Author:

Patnaik MN Murthy,Renji K,Gopal KV Nagendra

Abstract

Though damage identification using guided waves generated using ultrasonics is well proven, its usage for structural health monitoring poses difficulties. Piezo electric actuation and sensing overcomes this difficulty to some extent. In this work, usage of such guided waves for damage identification is investigated. Piezo electric wafer transducers are used for generating and sensing the guided waves. Presence of multiple modes and comparatively higher speeds of the guided waves throw up difficulties in damage identification. It is shown here that this problem can be addressed by considering different sensor location with respect to the damage with suitable interpretation of the results. Usage of fundamental antisymmetric (Ao) mode is found to be more suitable in localizing the damage compared to the fundamental symmetric (So) mode. Asymmetrically located damage causes mode conversion. It is demonstrated in this work that the mode converted guided wave (So) could be advantageously used for identification, localization, and quantification of the damage. Damage identification and localization schemes are evolved based on the location of the sensors with respect to the damage. It is shown that the reduction in the magnitude of the mode converted wave can be utilized for assessing the depth of the damage. 3D finite element based numerical models incorporating a PZT sensor are developed and validated with experimental results in terms of the characteristics of the waves, mode conversion due to damage and influence of the defect size on the received signals which are necessary for quantification of the damage.

Publisher

International Institute of Acoustics and Vibration (IIAV)

Subject

Soil Science,Plant Science,Soil Science,Plant Science,Soil Science,General Medicine,Philosophy,General Physics and Astronomy,Nuclear and High Energy Physics,Nuclear and High Energy Physics,General Materials Science,Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3