Effects of Source and Load Impedance on the Insertion Loss of Expansion Chamber Hydraulic Noise Suppressors

Author:

Yang Fan,Zhang Jianpin,Cao Xuepeng,Deng Bin

Abstract

Currently, the acoustical performance of hydraulic noise attenuators is usually measured in terms of insertion loss (IL) and transmission loss (TL). Compared with the TL, experimental measurements of IL appear to be easier, however, the acquisition of source and load impedance for theoretical IL seems to be time-consuming and costly. Considering that the analogy between electrical system variables and fluidic ones is complete, well-established electrical circuit representations could be used for hydraulic systems using expansion chamber configurations as the hydraulic suppressors. Utilizing the Thevenin theorem and Norton theorem in the electrical network theory, two types of pressure oscillation source representations are equivalent insofar as the suppressors are concerned and then the expression for IL could be simplified. Finally, through the experimental measurements of the IL, the most suitable electrical representation would be selected. By implementing this method, the measurements of source impedance and load impedance tend to be avoided, which appears to be an attractive approach.

Publisher

International Institute of Acoustics and Vibration (IIAV)

Subject

Nuclear and High Energy Physics,General Materials Science,Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Physical and Theoretical Chemistry,Management of Technology and Innovation,Management Science and Operations Research,Public Health, Environmental and Occupational Health,Psychiatry and Mental health,Clinical Psychology,General Psychology,Arts and Humanities (miscellaneous),Pathology and Forensic Medicine,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3