Ball Bearing Fault Diagnosis using Supervised and Unsupervised Machine Learning Methods
Author:
Publisher
International Institute of Acoustics and Vibration (IIAV)
Subject
Mechanical Engineering,Acoustics and Ultrasonics
Link
http://www.iiav.org/ijav/content/volumes/20_2015_1570691426853784/vol_4/808_fullpaper_802421450098858.pdf
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A methodological integration of fisher score technique with intelligent machine learning methods for ball bearing fault investigation;Engineering Research Express;2024-05-10
2. Machine Learning-based Predictive Maintenance for Fault Detection in Rotating Machinery: A Case Study;Engineering, Technology & Applied Science Research;2024-04-02
3. A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges, weaknesses and recommendations;Ain Shams Engineering Journal;2023-04
4. Dislocated time sequences – deep neural network for broken bearing diagnosis;Open Engineering;2023-01-01
5. Watershed prioritization and decision-making based on weighted sum analysis, feature ranking, and machine learning techniques;Arabian Journal of Geosciences;2023-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3