Modal Analysis of Mistuned Turbine Blade Packet Due to Combined Blade and Lacing Wire Damage

Author:

Kotambkar Mangesh S.

Abstract

The turbine disk blade system is a cyclic symmetric structure, initially tuned with all its blades perfectly identical in geometry and material properties; similarly interconnecting lacing wires are of equal stiffness. The cyclic symmetry of the bladed disks gets destroyed due to small differences in material properties or geometric variation between individual blades or lacing wires causing mistuning. Although mistuning is typically small, it can have a drastic effect on the dynamic response of the system. In particular, mistuning can also cause vibration localization for a few blades and the associated concentration of vibration energy can lead to an increase in blade amplitude and stress levels. Numerical simulations are performed with the characteristic equations of the simplified continuum model. Two different damage severity indices are included in the model to study the combined effect of cracked blades and damaged lacing wires on the natural frequencies of grouped blades. This study highlights the characteristic changes in the sub modal frequencies under combined damage in a stand still position. Although the major cause of mistuning is blade damage, lacing wire damage is more frequent and often acts as a precursor to blade damage and thus the present study focuses on mistuning due to combined damage.

Publisher

International Institute of Acoustics and Vibration (IIAV)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diagnosis and Evaluation of Francis Type Turbine Alternators using the Multi-Sensor Vibration Analysis Approach: A Case Study;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

2. Vibration Characteristics Investigation of Hard-Coated Mistuned Blisk With Multipackets by Lumped Parameter Model;Journal of Engineering for Gas Turbines and Power;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3