Dynamic Responses of Liquid Storage Tank Under Near Fault Pulse-Like Earthquakes With Different Focal Mechanisms

Author:

Jing Wei,Shen Jian,Cheng Xuansheng

Abstract

A liquid storage tank has a very extensive role in the petrochemical industry, and earthquake damage will cause very serious consequences. Considering the fluid-solid coupling, material nonlinearity and liquid level shaking dynamic behavior, three-dimensional calculation models of non-isolated and isolated liquid storage tanks are established, respectively. 12 earthquake waves are selected from Pacific Earthquake Engineering Research Center (PEER), and there are three earthquake waves of reverse (R), strike slip (SS), reverse oblique (RO) and normal (N) focal mechanisms, respectively. The influence of the focal mechanism on the dynamic responses of the liquid storage tank is investigated. The effectiveness control of sliding isolation on a near fault earthquake is discussed. The influence of the diameter of the limiting device on the shock absorption effect is analyzed. The results show that the order of influence of four types of focal mechanisms on liquid sloshing wave height is as follows: RO$mathrm{>$R$mathrm{>$SS$mathrm{>$N. For the wall displacement, liquid pressure and effective stress of the tank wall, the response under N-type focal mechanism earthquake is generally larger than that of the other three types, and the difference of wall displacement, liquid pressure and wall effective stress under RO, R and SS focal mechanism earthquakes is small. The results show that the dynamic responses of the liquid storage tank under different focal mechanism earthquakes is quite different. Sliding isolation can significantly reduce the dynamic responses of the liquid storage tank under strong near-fault earthquakes, and the diameter of the limiting device will affect the shock absorption effect of sliding isolation.

Publisher

International Institute of Acoustics and Vibration (IIAV)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3