Combined effect of methotrexate and bifidobacteria metabolites on TNFα AND IFNγ production by human peripheral blood mononuclears

Author:

Ivanova Elena V.,Chaynikova Irina N.,Bekpergenova Anastasia V.ORCID,Bondarenko Taisiya A.,Chelpachenko Olga E.,Zdvizhkova Irina A.,Perunova Natalya B.,Bukharin Oleg V.

Abstract

Methotrexate (Mtx) is a first-line drug for the treatment of numerous rheumatic and non-rheumatic disorders, including oncological disdiseases. However, therapeutic efficacy of Mtx is limited by severe toxicity to many organs (myelo-, hepato-, nephrotoxicity, mucositis, enteritis, dysbiosis at various human biotopes, etc.). Recently, a number of studies showed that some metabolites of Bifidobacteria and Lactobacilli are able to enhance effect of chemotherapeutic drugs and limit their toxic properties. The aim of the present work was to study the possible potentiating action of Bifidobacteria cell-free supernatants and methotrexate upon secretion of pro-inflammatory TNF and IFN cytokines by human peripheral blood mononuclear cells (PBMCs). The immunoregulatory effects upon production of TNF and IFNg was evaluated in the in vitro model of cultured PBMC supplemented with Bifidobacteria metabolites, methotrexate, or their combination. Analysis of the combined effect of Bifidobacteria metabolites and Mtx on the cytokine production revealed their synergism towards the key pro-inflammatory cytokines (TNF and IFN). We found an increase against the control cultures (with Mtx only), inhibition of the early pro-inflammatory cytokine TNF production. On the contrary, we revealed an increased secretion of IFN which regulates the effector cells. The results obtained with these cytokines suggest the presence of a potentiating effect of Bifidobacteria metabolites upon anti-inflammatory and immunoregulatory properties of methotrexate. Thus, Bifidobacteria metabolites can be considered a promising agent which potentiates the therapeutic action of methotrexate by suppressing TNF secretion and stimulating IFN by immunocompetent cells. Further studies of the combined effects of Mtx and metabolites from the intestinal microbiota upon the cytokine production by effector cells could be recommended, aiming to enhance therapeutic effect of methotrexate and limit its toxic properties using the Bifidobacteria metabolites.

Publisher

Russian Society of Immunology

Subject

Immunology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3