Experimental mouse model of pulmonary fibrosis induced by nebulized LPS administration

Author:

Namakanova O. A.,Gubernatorova E. O.,Chicherina N. R.,Zvartsev R. V.,Drutskaya M. S.

Abstract

Lipopolysaccharide (LPS)-induced lung injury is the most commonly used mouse model of acute lung inflammation that simulates the development of respiratory distress syndrome in humans. The effects of acute LPS-induced airway inflammation are well studied and associated with the neutrophil accumulation in bronchoalveolar lavage fluid (BALF), local and systemic production of proinflammatory cytokines and narrowing of the airways. Recent studies demonstrated the presence of pulmonary fibrosis characterized by increased fibroblast proliferation and excess extracellular matrix deposition in late phase of acute lung inflammation caused by LPS exposure. This work describes an experimental model of acute lung injury induced by a single aerosol injection of LPS as a reproducible in vivo model of pulmonary fibrosis. To induce lung injury, C57BL/6 mice were placed in a chamber and exposed to an aerosol containing 10 mg of LPS using an Aeroneb Lab Nebulizer delivery system. We found that 5 weeks after a single nebulized LPS administration, mice have increased production of IL-6 in BALF. Although the frequency of neutrophils was not altered, there was a decrease in the percentage of alveolar macrophages at 5 weeks after LPS exposure, indicating continued lung inflammation. Several weeks after aerosolized LPS challenge, IL-10 production in BALF was increased, as well as expression of Tgfb1, Col1a1, Il13 and Acta2, and collagen deposition in lung tissue compared to mice with acute lung inflammation. Thus, the single nebulized LPS administration represents a relevant, reproducible and physiologic model in mice allowing to investigate the mechanisms of pulmonary fibrosis development and help in the search for new therapeutic agents and approaches.

Publisher

Russian Society of Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3