Interaction between MSCS and blood mononuclear cells during <i>in vitro</i> co-cultivation in the presence of a three-dimensional artificial matrix mimicking regenerating bone tissue

Author:

Yurova Kristina A.,Norkin I. K.,Khaziakhmatova O. G.,Malashchenko V. V.,Melashchenko O. B.,Ivanov P. A.,Ligatyuk D. D.,Khlusov I. A.,Litvinova L. S.

Abstract

Bone tissue repair and regeneration is a complex process involving many cells and controlled by multiple factors. Immune cells and cytokines play a crucial role in regulating the balance of bone formation and resorption. However, the immunomodulatory mechanism of bone regeneration is still unclear. Nevertheless, the reciprocal regulatory influence of immunocompetent cells and mesenchymal stem cells (MSCs) is well known. MSCs and immunocompetent cells secrete various cytokines, growth factors, and extracellular matrix molecules that play important roles in regulating hematopoiesis, angiogenesis, immune and inflammatory responses. Several studies confirm that different molecules expressed by MSCs may induce lymphocyte proliferation. Therefore, the study of the mutual influence of MSCs and blood mononuclear cells during in vitro co-cultivation, even in the presence of an artificial matrix mimicking regenerating bone tissue, is relevant and expedient. In this experimental series, the studies were performed at the interface between living and non-living substrate phases thus mimicking the “regenerating bone / hematopoietic microenvironment” system. A series of separated in time experiments was performed on a plastic surface (2D culture model) and in the presence of three-dimensional artificial matrices mimicking regenerating bone tissue (3D culture model).

Publisher

Russian Society of Immunology

Subject

Immunology,General Medicine

Reference7 articles.

1. Коршунов Д.А., Кондакова И.В. Современные достижения и проблемы в исследовании культур клеток // Успехи современной биологии, 2016. Т. 136, № 4. С. 347-361. [Korshunov D.A., Kondakova I.V. Modern achievements and problems in the study of cell cultures]. Uspekhi sovremennoy biologii = Advances in Modern Biology, 2016, Vol. 136, no. 4, pp. 347-361. (In Russ.)]

2. Costimulatory Effect of Rough Calcium Phosphate Coating and Blood Mononuclear Cells on Adipose-Derived Mesenchymal Stem Cells In Vitro as a Model of In Vivo Tissue Repair

3. Legostaeva E.V., Kulyashova K.S., Komarova E.G. Physical, chemical and biological properties of micro-arc deposited calcium phosphate coatings on titanium and zirconium-niobium alloy. Materialwissenschaft und Werkstofftechnik, 2013, Vol. 44, no. 2-3, pp. 188-197.

4. The haematoma and its role in bone healing

5. Steward A.J., Kelly D.J. Mechanical regulation of mesenchymal stem cell differentiation. J. Anat., 2015, Vol. 227, no. 6, pp. 717-731.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3