Involvement of PAR2 in inflammatory mediator release from human blood eosinophils

Author:

Hu Xinyu,Wang Haoyang

Abstract

Proteinase Activated Receptors (PARs) are the members of G-protein-coupled receptor family and can be cleaved by certain serine proteases to expose a tethered ligand domain, which binds and activates the receptors to initiate multiple signaling cascades. There is some evidence that certain proteases may regulate target cells by activating PARs. There are many studies, in which PARs play important roles in inflammation. One study indicated that PAR2 inhibition and deletion significantly suppressed the degree of inflammation due to decreased IL-6 and IL-1 levels. Another study also showed that PARs activation could mediate reactive oxygen species production and MAPK signaling leading to alveolar inflammation. In addition, platelet-derived CAPN1 can trigger the vascular inflammation associated with diabetes via cleavage of PAR1 and the release of TNF from the endothelial cell surface, and sarsasapogenin may alleviate diabetic nephropathy by the downregulation of PAR1. Another Phellodendron amurense bark extract can suppress the particulate matter-induced Ca2+ influx caused by direct action upon PAR2, alleviating inflammation and maintaining homeostatic levels of cell adhesion components. There are also other two antagonists of I-287 and GB88, which can reduce the PAR2-mediated inflammatory reaction. In this study, we tested expression of PARs and IL-5, IL-6, RANTES and ECP release from human blood eosinophils using different enzymes and PAR agonists. The expression of PARs was assessed in human blood eosinophils by flow cytometry and RT-PCR, and the levels of cytokine and eosinophil cationic protein (ECP) in the cultured supernatants were determined with ELISA kits. Flow cytometry shows that human eosinophils express PAR2 protein and do not express PAR1, PAR3 and PAR4 proteins. RT-PCR analysis revealed expression of PAR2 and PAR3 genes in human eosinophils. Tryptase, trypsin and elastase can induce significant IL-5, IL-6 and ECP release. Trypsin and elastase may also stimulate RANTES secretion, but tryptase cannot induce the RANTES secretion. Tryptase, trypsin and elastase-induced cytokine and ECP release from human blood eosinophils most likely occurs via activation of PAR2.

Publisher

Russian Society of Immunology

Subject

Immunology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3