Mathematical immunology: processes, models and data assimilation

Author:

Grebennikov Dmitry S.,Zheltkova Valeriya V.,Savinkov Rostislav S.,Bocharov Gennady A.

Abstract

The immune system is a complex multiscale multiphysical object. Understanding its functioning in the frame of systemic analysis implies the use of mathematical modelling, formulation of data consistency criterion, estimation of parameters, uncertainty analysis, and optimal model selection. In this work, we present some promising approaches to modelling the multi-physics immune processes, i.e., cell migration in lymph nodes (LN), lymph flow, homeostatic regulation of immune responses in chronic infections. To describe the spatial-temporal dynamics of immune responses in lymph LN, we propose a model of lymphocyte migration, based on the second Newtons law and considering three kinds of forces. The empirical distributions of three lymphocytes motility characteristics were used for model calibration using the KolmogorovSmirnov metric. Prediction of lymph flow in a lymph node requires costly computations, due to diversity of sizes, forms, inner structure of LNs and boundary conditions. We proposed an approach to lymph flow modelling based on replacing the full-fledged computational physics-based model with an artificial neural network (ANN), trained on the set of pre-formed results computed using an initial mechanistic model. The ANN-based model reduces the computational time for some lymph flow characteristics by four orders of magnitude. Calibration of MarchukPetrov model of antiviral immune response for SARS-CoV-2 infection was performed. To this end, we used previously published data on the viral load kinetics in nasopharynx of volunteers, and data on the observed ranges of interferon, antibodies and CTLs in the blood. The parameters, which have the most significant impact at different stages of infection process, were identified. Inhibition of immune mechanisms, e.g., T cell exhaustion, is a distinctive feature of chronic viral infections and malignant diseases. We propose a mathematical model for the studies of regulation parameters of four exhausted T cell subsets in order to examine the balance of their proliferation and differentiation determined by interaction with SIRPa+ PD-L1+ and XCR+1 dendritic cells. The model parameters are evaluated, in order to study the reinvigoration effect of aPD-L1 therapy on the homeostasis of exhausted cells.

Publisher

Russian Society of Immunology

Subject

Immunology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3