Challenges of Using Signaling Data From Telecom Network in Non-Urban Areas

Author:

Toft Håvard1ORCID,Sirotkin Alexey2ORCID,Landrø Markus3ORCID,Engeset Rune Verpe3ORCID,Hendrikx Jordy4ORCID

Affiliation:

1. Norwegian Water Resources and Energy Directorate: Oslo, NO

2. Telia Company

3. Norwegian Water Resources and Energy Directorate

4. Montana State University

Abstract

Outdoor recreation continues to increase in popularity. In Norway, several avalanche fatalities are recorded every year, but the accurate calculation of a fatal accident rate is impossible without knowing how many people are exposed. We attempted to employ signaling data from telecom network data to enumerate backcountry travelers in avalanche terrain. Each signaling data event contains information about which coverage area the phone is connected to and timestamp. There is no triangulation, making it impossible to know whether the associated phone is moving or stationary within the coverage area. Hence, it's easier to track the phone's movement through different coverage areas. We utilize this by enumerating the number of people with phones traveling to avalanche-prone terrain for the 2019/2020 winter season. We estimated that 13,666 phones were in avalanche terrain during the season, ranging from 0 to 118 phones/day with an average of 75 phones/day. We correlated the number of phones per day against amount of daylight (R2=0.186, p-value <0.01), weekends and holidays (R2=0.073, p-value <0.01), number of bulletin views (R2=0.045, p-value <0.01). Unfortunately, the validation revealed discrepancies between the estimated positions in the mobile network and the true reference positions as collected with a GPS. We attribute this to the algorithm being designed to measure urban mobility and the long distance between the base transceiver stations in mountainous areas. This lack of coherence between the signaling data and GPS records for rural areas in Norway has implication for the utility of signaling data outside of urban regions.

Publisher

JOTE Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3