Affiliation:
1. Singapore General Hospital, Singapore
2. Tan Tock Seng Hospital, Singapore
Abstract
Introduction: Spinal cord injury (SCI) often results in significant neurologic dysfunction and disability. An annual incidence of 15 to 40 traumatic SCI cases per million population has been reported worldwide, and a conservative estimate for Singapore would be 23 cases per million. With continued improvements in medical care, an increasing prevalence of SCI patients is expected, with corresponding need for comprehensive rehabilitation services led by specialist rehabilitation physicians.
Methods: A literature search, review, and summary of findings of recent studies relating to factors associated with recovery, as well as interventions for rehabilitation and promotion of healing of the injured spinal cord was performed.
Conclusions: Many SCI patients show improvements in motoric and neurologic level, but those with complete injuries have poor chance of improving American Spinal Injury Association (ASIA) scores. SCI of violent aetiology tends to be more neurologic complete, and those without sacral sparing less likely to improve. Older patients generally do well in activities of daily living. Women have better motor score improvement, although men have better Functional Independence Measure (FIM) scores generally. Electrodiagnostic tests such as somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) can help with prognostication, as can imaging techniques such as magnetic resonance imaging (MRI). Immediate surgery for spinal decompression may improve recovery, but whether routine surgery after SCI improves function remains unclear, as does the timing. Methylprednisolone and similar agents appear to help limit secondary injury processes. Rehabilitation interventions such as functional electrical stimulation (FES) and body-weight supported treadmill ambulation training may be effective, as may neural-controlled prostheses and devices. Substances that promote repair and regeneration of the injured spinal cord such as GM-1, 4-AP, BDNG, GDNF, Nogo and MAG-inhibitors, have been studied. Transplanted tissues and cells, such as blood macrophages, bone marrow transplant with GM-CSF, olfactory ensheathing cells, fetal tissues, stem or progenitor cells, have been reported to produce neurological improvements.
Key words: Prognosis, Regeneration, Rehabilitation, Spinal cord injuries
Publisher
Academy of Medicine, Singapore
Reference73 articles.
1. Devivo MJ, Kartus PL, Stover SL, Fine PR. Benefits of early admission to an organized spinal injury care system. Paraplegia 1990;23:545-55.
2. Jackson AB, Dijkers M, DeVivo MJ, Poczatek RB. A demographic profile of new traumatic spinal cord injuries: Change and stability over 30 years. Arch Phys Med Rehabil 2004;85:1740-8.
3. Facts and Figures at a Glance – June 2006, NSCISC. Available at: www.spinalcord.uab.edu. Accessed 21 January 2007.
4. Cripps RA. Spinal cord injury, Australia, 2002-3. Injury Research and Statistics Series Number 22. Adelaide: AIHW, 2004 (AIHW cat no. INJCAT 64).
5. Tan ES, Balachandran N. The causes, pattern and effects of spinal injury in Singapore. Clin Rehab 1987;1:101-6.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献