Identification of Insulin Resistance in Subjects with Normal Glucose Tolerance

Author:

Lin Jiunn Diann1,Chang Jin Biou2,Wu Chung Ze1,Pei Dee3,Hsieh Chang Hsun2,Hsieh An Tsz1,Chen Yen Lin4,Hsu Chun Hsien5,Liu Chuan Chieh6

Affiliation:

1. Shuang Ho Hospital, School of Medicine, Taipei Medical University, Taipei, Taiwan

2. Tri-Service General Hospital, Taipei, Taiwan

3. Cardinal Tien Hospital, Medical School, Catholic Fu Jen University, Taipei, Taiwan

4. Cardinal Tien Hospital, Medical School, Fu Jen Catholic University, Taiwan

5. Cardinal Tien Hospital, Medical School, Catholic Fu-Jen University, Taipei, Taiwan

6. Cardinal Tien Hospital, School of Medicine, Catholic Fu-Jen University, Taipei, Taiwan

Abstract

Introduction: Decreased insulin action (insulin resistance) is crucial in the pathogenesis of type 2 diabetes. Decreased insulin action can even be found in normoglycaemic patients, and they still bear increased risks for cardiovascular disease. In this study, we built models using data from metabolic syndrome (Mets) components and the oral glucose tolerance test (OGTT) to detect insulin resistance in subjects with normal glucose tolerance (NGT). Materials and Methods: In total, 292 participants with NGT were enrolled. Both an insulin suppression test (IST) and a 75-g OGTT were administered. The steady-state plasma glucose (SSPG) level derived from the IST was the measurement of insulin action. Participants in the highest tertile were defined as insulin-resistant. Five models were built: (i) Model 0: body mass index (BMI); (ii) Model 1: BMI, systolic and diastolic blood pressure, triglyceride; (iii) Model 2: Model 1 + fasting plasma insulin (FPI); (iv) Model 3: Model 2 + plasma glucose level at 120 minutes of the OGTT; and (v) Model 4: Model 3 + plasma insulin level at 120 min of the OGTT. Results: The area under the receiver operating characteristic curve (aROC curve) was observed to determine the predictive power of these models. BMI demonstrated the greatest aROC curve (71.6%) of Mets components. The aROC curves of Models 2, 3, and 4 were all substantially greater than that of BMI (77.1%, 80.1%, and 85.1%, respectively). Conclusion: A prediction equation using Mets components and FPI can be used to predict insulin resistance in a Chinese population with NGT. Further research is required to test the utility of the equation in other populations and its prediction of cardiovascular disease or diabetes mellitus. Key words: Area under the receiver operating characteristic curve, Body mass index, Insulin resistance, Metabolic syndrome, Oral glucose tolerance test

Funder

Cardinal Tien Hospital

Publisher

Academy of Medicine, Singapore

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3