Crawling the German Health Web: Exploratory Study and Graph Analysis

Author:

Zowalla RichardORCID,Wetter ThomasORCID,Pfeifer DanielORCID

Abstract

Background The internet has become an increasingly important resource for health information. However, with a growing amount of web pages, it is nearly impossible for humans to manually keep track of evolving and continuously changing content in the health domain. To better understand the nature of all web-based health information as given in a specific language, it is important to identify (1) information hubs for the health domain, (2) content providers of high prestige, and (3) important topics and trends in the health-related web. In this context, an automatic web crawling approach can provide the necessary data for a computational and statistical analysis to answer (1) to (3). Objective This study demonstrates the suitability of a focused crawler for the acquisition of the German Health Web (GHW) which includes all health-related web content of the three mostly German speaking countries Germany, Austria and Switzerland. Based on the gathered data, we provide a preliminary analysis of the GHW’s graph structure covering its size, most important content providers and a ratio of public to private stakeholders. In addition, we provide our experiences in building and operating such a highly scalable crawler. Methods A support vector machine classifier was trained on a large data set acquired from various German content providers to distinguish between health-related and non–health-related web pages. The classifier was evaluated using accuracy, recall and precision on an 80/20 training/test split (TD1) and against a crowd-validated data set (TD2). To implement the crawler, we extended the open-source framework StormCrawler. The actual crawl was conducted for 227 days. The crawler was evaluated by using harvest rate and its recall was estimated using a seed-target approach. Results In total, n=22,405 seed URLs with country-code top level domains .de: 85.36% (19,126/22,405), .at: 6.83% (1530/22,405), .ch: 7.81% (1749/22,405), were collected from Curlie and a previous crawl. The text classifier achieved an accuracy on TD1 of 0.937 (TD2=0.966), a precision on TD1 of 0.934 (TD2=0.954) and a recall on TD1 of 0.944 (TD2=0.989). The crawl yields 13.5 million presumably relevant and 119.5 million nonrelevant web pages. The average harvest rate was 19.76%; recall was 0.821 (4105/5000 targets found). The resulting host-aggregated graph contains 215,372 nodes and 403,175 edges (network diameter=25; average path length=6.466; average degree=1.872; average in-degree=1.892; average out-degree=1.845; modularity=0.723). Among the 25 top-ranked pages for each country (according to PageRank), 40% (30/75) were web sites published by public institutions. 25% (19/75) were published by nonprofit organizations and 35% (26/75) by private organizations or individuals. Conclusions The results indicate, that the presented crawler is a suitable method for acquiring a large fraction of the GHW. As desired, the computed statistical data allows for determining major information hubs and important content providers on the GHW. In the future, the acquired data may be used to assess important topics and trends but also to build health-specific search engines.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference90 articles.

1. Consumer health information seeking on the Internet: the state of the art

2. How do consumers search for and appraise health information on the world wide web? Qualitative study using focus groups, usability tests, and in-depth interviews

3. European citizens' use of E-health services: A study of seven countries

4. FoxSDugganMHealth Online 2013201301152020-06-08WashingtonPew Internet and American Life Projecthttps://www.pewresearch.org/internet/wp-content/uploads/sites/9/media/Files/Reports/PIP_HealthOnline.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3