Machine Learning–Based Short-Term Mortality Prediction Models for Patients With Cancer Using Electronic Health Record Data: Systematic Review and Critical Appraisal

Author:

Lu Sheng-ChiehORCID,Xu CaiORCID,Nguyen Chandler HORCID,Geng YiminORCID,Pfob AndréORCID,Sidey-Gibbons ChrisORCID

Abstract

Background In the United States, national guidelines suggest that aggressive cancer care should be avoided in the final months of life. However, guideline compliance currently requires clinicians to make judgments based on their experience as to when a patient is nearing the end of their life. Machine learning (ML) algorithms may facilitate improved end-of-life care provision for patients with cancer by identifying patients at risk of short-term mortality. Objective This study aims to summarize the evidence for applying ML in ≤1-year cancer mortality prediction to assist with the transition to end-of-life care for patients with cancer. Methods We searched MEDLINE, Embase, Scopus, Web of Science, and IEEE to identify relevant articles. We included studies describing ML algorithms predicting ≤1-year mortality in patients of oncology. We used the prediction model risk of bias assessment tool to assess the quality of the included studies. Results We included 15 articles involving 110,058 patients in the final synthesis. Of the 15 studies, 12 (80%) had a high or unclear risk of bias. The model performance was good: the area under the receiver operating characteristic curve ranged from 0.72 to 0.92. We identified common issues leading to biased models, including using a single performance metric, incomplete reporting of or inappropriate modeling practice, and small sample size. Conclusions We found encouraging signs of ML performance in predicting short-term cancer mortality. Nevertheless, no included ML algorithms are suitable for clinical practice at the current stage because of the high risk of bias and uncertainty regarding real-world performance. Further research is needed to develop ML models using the modern standards of algorithm development and reporting.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3