Occupation Coding of Job Titles: Iterative Development of an Automated Coding Algorithm for the Canadian National Occupation Classification (ACA-NOC)

Author:

Bao HongchangORCID,Baker Christopher J OORCID,Adisesh AnilORCID

Abstract

Background In many research studies, the identification of social determinants is an important activity, in particular, information about occupations is frequently added to existing patient data. Such information is usually solicited during interviews with open-ended questions such as “What is your job?” and “What industry sector do you work in?” Before being able to use this information for further analysis, the responses need to be categorized using a coding system, such as the Canadian National Occupational Classification (NOC). Manual coding is the usual method, which is a time-consuming and error-prone activity, suitable for automation. Objective This study aims to facilitate automated coding by introducing a rigorous algorithm that will be able to identify the NOC (2016) codes using only job title and industry information as input. Using manually coded data sets, we sought to benchmark and iteratively improve the performance of the algorithm. Methods We developed the ACA-NOC algorithm based on the NOC (2016), which allowed users to match NOC codes with job and industry titles. We employed several different search strategies in the ACA-NOC algorithm to find the best match, including exact search, minor exact search, like search, near (same order) search, near (different order) search, any search, and weak match search. In addition, a filtering step based on the hierarchical structure of the NOC data was applied to the algorithm to select the best matching codes. Results The ACA-NOC was applied to over 500 manually coded job and industry titles. The accuracy rate at the four-digit NOC code level was 58.7% (332/566) and improved when broader job categories were considered (65.0% at the three-digit NOC code level, 72.3% at the two-digit NOC code level, and 81.6% at the one-digit NOC code level). Conclusions The ACA-NOC is a rigorous algorithm for automatically coding the Canadian NOC system and has been evaluated using real-world data. It allows researchers to code moderate-sized data sets with occupation in a timely and cost-efficient manner such that further analytics are possible. Initial assessments indicate that it has state-of-the-art performance and is readily extensible upon further benchmarking on larger data sets.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Reference12 articles.

1. Occupation as Socioeconomic Status or Environmental Exposure? A Survey of Practice Among Population-based Cardiovascular Studies in the United States

2. The National Occupational Classification (NOC)2019-03-28http://noc.esdc.gc.ca/English/NOC/AboutNOC.aspx?ver=16

3. Three Methods for Occupation Coding Based on Statistical Learning

4. The use of occupation and industry classifications in general population studies

5. BethmannASchierholzMWenzigKZielonkaMAutomatic Coding of OccupationsStatistics Canada201408312020-07-03https://www150.statcan.gc.ca/n1/en/catalogue/11-522-X201300014291

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3