Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial

Author:

Faruqui Syed Hasib AkhterORCID,Du YanORCID,Meka RajithaORCID,Alaeddini AdelORCID,Li ChengdongORCID,Shirinkam SaraORCID,Wang JingORCID

Abstract

Background Type 2 diabetes mellitus (T2DM) is a major public health burden. Self-management of diabetes including maintaining a healthy lifestyle is essential for glycemic control and to prevent diabetes complications. Mobile-based health data can play an important role in the forecasting of blood glucose levels for lifestyle management and control of T2DM. Objective The objective of this work was to dynamically forecast daily glucose levels in patients with T2DM based on their daily mobile health lifestyle data including diet, physical activity, weight, and glucose level from the day before. Methods We used data from 10 T2DM patients who were overweight or obese in a behavioral lifestyle intervention using mobile tools for daily monitoring of diet, physical activity, weight, and blood glucose over 6 months. We developed a deep learning model based on long short-term memory–based recurrent neural networks to forecast the next-day glucose levels in individual patients. The neural network used several layers of computational nodes to model how mobile health data (food intake including consumed calories, fat, and carbohydrates; exercise; and weight) were progressing from one day to another from noisy data. Results The model was validated based on a data set of 10 patients who had been monitored daily for over 6 months. The proposed deep learning model demonstrated considerable accuracy in predicting the next day glucose level based on Clark Error Grid and ±10% range of the actual values. Conclusions Using machine learning methodologies may leverage mobile health lifestyle data to develop effective individualized prediction plans for T2DM management. However, predicting future glucose levels is challenging as glucose level is determined by multiple factors. Future study with more rigorous study design is warranted to better predict future glucose levels for T2DM management.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3