Accessible Ecosystem for Clinical Research (Federated Learning for Everyone): Development and Usability Study

Author:

Pirmani AshkanORCID,Oldenhof MartijnORCID,Peeters Liesbet MORCID,De Brouwer EdwardORCID,Moreau YvesORCID

Abstract

Background The integrity and reliability of clinical research outcomes rely heavily on access to vast amounts of data. However, the fragmented distribution of these data across multiple institutions, along with ethical and regulatory barriers, presents significant challenges to accessing relevant data. While federated learning offers a promising solution to leverage insights from fragmented data sets, its adoption faces hurdles due to implementation complexities, scalability issues, and inclusivity challenges. Objective This paper introduces Federated Learning for Everyone (FL4E), an accessible framework facilitating multistakeholder collaboration in clinical research. It focuses on simplifying federated learning through an innovative ecosystem-based approach. Methods The “degree of federation” is a fundamental concept of FL4E, allowing for flexible integration of federated and centralized learning models. This feature provides a customizable solution by enabling users to choose the level of data decentralization based on specific health care settings or project needs, making federated learning more adaptable and efficient. By using an ecosystem-based collaborative learning strategy, FL4E encourages a comprehensive platform for managing real-world data, enhancing collaboration and knowledge sharing among its stakeholders. Results Evaluating FL4E’s effectiveness using real-world health care data sets has highlighted its ecosystem-oriented and inclusive design. By applying hybrid models to 2 distinct analytical tasks—classification and survival analysis—within real-world settings, we have effectively measured the “degree of federation” across various contexts. These evaluations show that FL4E’s hybrid models not only match the performance of fully federated models but also avoid the substantial overhead usually linked with these models. Achieving this balance greatly enhances collaborative initiatives and broadens the scope of analytical possibilities within the ecosystem. Conclusions FL4E represents a significant step forward in collaborative clinical research by merging the benefits of centralized and federated learning. Its modular ecosystem-based design and the “degree of federation” feature make it an inclusive, customizable framework suitable for a wide array of clinical research scenarios, promising to revolutionize the field through improved collaboration and data use. Detailed implementation and analyses are available on the associated GitHub repository.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3