Reduction of COVID-19 Incidence and Nonpharmacologic Interventions: Analysis Using a US County–Level Policy Data Set

Author:

Ebrahim SenanORCID,Ashworth HenryORCID,Noah CrayORCID,Kadambi AdeshORCID,Toumi AsmaeORCID,Chhatwal JagpreetORCID

Abstract

Background Worldwide, nonpharmacologic interventions (NPIs) have been the main tool used to mitigate the COVID-19 pandemic. This includes social distancing measures (closing businesses, closing schools, and quarantining symptomatic persons) and contact tracing (tracking and following exposed individuals). While preliminary research across the globe has shown these policies to be effective, there is currently a lack of information on the effectiveness of NPIs in the United States. Objective The purpose of this study was to create a granular NPI data set at the county level and then analyze the relationship between NPI policies and changes in reported COVID-19 cases. Methods Using a standardized crowdsourcing methodology, we collected time-series data on 7 key NPIs for 1320 US counties. Results This open-source data set is the largest and most comprehensive collection of county NPI policy data and meets the need for higher-resolution COVID-19 policy data. Our analysis revealed a wide variation in county-level policies both within and among states (P<.001). We identified a correlation between workplace closures and lower growth rates of COVID-19 cases (P=.004). We found weak correlations between shelter-in-place enforcement and measures of Democratic local voter proportion (R=0.21) and elected leadership (R=0.22). Conclusions This study is the first large-scale NPI analysis at the county level demonstrating a correlation between NPIs and decreased rates of COVID-19. Future work using this data set will explore the relationship between county-level policies and COVID-19 transmission to optimize real-time policy formulation.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3