An Ontology-Based Approach for Consolidating Patient Data Standardized With European Norm/International Organization for Standardization 13606 (EN/ISO 13606) Into Joint Observational Medical Outcomes Partnership (OMOP) Repositories: Description of a Methodology

Author:

Frid SantiagoORCID,Pastor Duran XavierORCID,Bracons Cucó GuillemORCID,Pedrera-Jiménez MiguelORCID,Serrano-Balazote PabloORCID,Muñoz Carrero AdolfoORCID,Lozano-Rubí RaimundoORCID

Abstract

Background To discover new knowledge from data, they must be correct and in a consistent format. OntoCR, a clinical repository developed at Hospital Clínic de Barcelona, uses ontologies to represent clinical knowledge and map locally defined variables to health information standards and common data models. Objective The aim of the study is to design and implement a scalable methodology based on the dual-model paradigm and the use of ontologies to consolidate clinical data from different organizations in a standardized repository for research purposes without loss of meaning. Methods First, the relevant clinical variables are defined, and the corresponding European Norm/International Organization for Standardization (EN/ISO) 13606 archetypes are created. Data sources are then identified, and an extract, transform, and load process is carried out. Once the final data set is obtained, the data are transformed to create EN/ISO 13606–normalized electronic health record (EHR) extracts. Afterward, ontologies that represent archetyped concepts and map them to EN/ISO 13606 and Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) standards are created and uploaded to OntoCR. Data stored in the extracts are inserted into its corresponding place in the ontology, thus obtaining instantiated patient data in the ontology-based repository. Finally, data can be extracted via SPARQL queries as OMOP CDM–compliant tables. Results Using this methodology, EN/ISO 13606–standardized archetypes that allow for the reuse of clinical information were created, and the knowledge representation of our clinical repository by modeling and mapping ontologies was extended. Furthermore, EN/ISO 13606–compliant EHR extracts of patients (6803), episodes (13,938), diagnosis (190,878), administered medication (222,225), cumulative drug dose (222,225), prescribed medication (351,247), movements between units (47,817), clinical observations (6,736,745), laboratory observations (3,392,873), limitation of life-sustaining treatment (1,298), and procedures (19,861) were created. Since the creation of the application that inserts data from extracts into the ontologies is not yet finished, the queries were tested and the methodology was validated by importing data from a random subset of patients into the ontologies using a locally developed Protégé plugin (“OntoLoad”). In total, 10 OMOP CDM–compliant tables (“Condition_occurrence,” 864 records; “Death,” 110; “Device_exposure,” 56; “Drug_exposure,” 5609; “Measurement,” 2091; “Observation,” 195; “Observation_period,” 897; “Person,” 922; “Visit_detail,” 772; and “Visit_occurrence,” 971) were successfully created and populated. Conclusions This study proposes a methodology for standardizing clinical data, thus allowing its reuse without any changes in the meaning of the modeled concepts. Although this paper focuses on health research, our methodology suggests that the data be initially standardized per EN/ISO 13606 to obtain EHR extracts with a high level of granularity that can be used for any purpose. Ontologies constitute a valuable approach for knowledge representation and standardization of health information in a standard-agnostic manner. With the proposed methodology, institutions can go from local raw data to standardized, semantically interoperable EN/ISO 13606 and OMOP repositories.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3