A Scalable Radiomics- and Natural Language Processing–Based Machine Learning Pipeline to Distinguish Between Painful and Painless Thoracic Spinal Bone Metastases: Retrospective Algorithm Development and Validation Study

Author:

Naseri HosseinORCID,Skamene SoniaORCID,Tolba MarwanORCID,Faye Mame DaroORCID,Ramia PaulORCID,Khriguian JuliaORCID,David MarcORCID,Kildea JohnORCID

Abstract

Background The identification of objective pain biomarkers can contribute to an improved understanding of pain, as well as its prognosis and better management. Hence, it has the potential to improve the quality of life of patients with cancer. Artificial intelligence can aid in the extraction of objective pain biomarkers for patients with cancer with bone metastases (BMs). Objective This study aimed to develop and evaluate a scalable natural language processing (NLP)– and radiomics-based machine learning pipeline to differentiate between painless and painful BM lesions in simulation computed tomography (CT) images using imaging features (biomarkers) extracted from lesion center point–based regions of interest (ROIs). Methods Patients treated at our comprehensive cancer center who received palliative radiotherapy for thoracic spine BM between January 2016 and September 2019 were included in this retrospective study. Physician-reported pain scores were extracted automatically from radiation oncology consultation notes using an NLP pipeline. BM center points were manually pinpointed on CT images by radiation oncologists. Nested ROIs with various diameters were automatically delineated around these expert-identified BM center points, and radiomics features were extracted from each ROI. Synthetic Minority Oversampling Technique resampling, the Least Absolute Shrinkage And Selection Operator feature selection method, and various machine learning classifiers were evaluated using precision, recall, F1-score, and area under the receiver operating characteristic curve. Results Radiation therapy consultation notes and simulation CT images of 176 patients (mean age 66, SD 14 years; 95 males) with thoracic spine BM were included in this study. After BM center point identification, 107 radiomics features were extracted from each spherical ROI using pyradiomics. Data were divided into 70% and 30% training and hold-out test sets, respectively. In the test set, the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of our best performing model (neural network classifier on an ensemble ROI) were 0.82 (132/163), 0.59 (16/27), 0.85 (116/136), and 0.83, respectively. Conclusions Our NLP- and radiomics-based machine learning pipeline was successful in differentiating between painful and painless BM lesions. It is intrinsically scalable by using NLP to extract pain scores from clinical notes and by requiring only center points to identify BM lesions in CT images.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3