Identifying the Medical Lethality of Suicide Attempts Using Network Analysis and Deep Learning: Nationwide Study

Author:

Kim BoraORCID,Kim YounghoonORCID,Park C Hyung KeunORCID,Rhee Sang JinORCID,Kim Young ShinORCID,Leventhal Bennett LORCID,Ahn Yong MinORCID,Paik HyojungORCID

Abstract

Background Suicide is one of the leading causes of death among young and middle-aged people. However, little is understood about the behaviors leading up to actual suicide attempts and whether these behaviors are specific to the nature of suicide attempts. Objective The goal of this study was to examine the clusters of behaviors antecedent to suicide attempts to determine if they could be used to assess the potential lethality of the attempt. To accomplish this goal, we developed a deep learning model using the relationships among behaviors antecedent to suicide attempts and the attempts themselves. Methods This study used data from the Korea National Suicide Survey. We identified 1112 individuals who attempted suicide and completed a psychiatric evaluation in the emergency room. The 15-item Beck Suicide Intent Scale (SIS) was used for assessing antecedent behaviors, and the medical outcomes of the suicide attempts were measured by assessing lethality with the Columbia Suicide Severity Rating Scale (C-SSRS; lethal suicide attempt >3 and nonlethal attempt ≤3). Results Using scores from the SIS, individuals who had lethal and nonlethal attempts comprised two different network nodes with the edges representing the relationships among nodes. Among the antecedent behaviors, the conception of a method’s lethality predicted suicidal behaviors with severe medical outcomes. The vectorized relationship values among the elements of antecedent behaviors in our deep learning model (E-GONet) increased performances, such as F1 and area under the precision-recall gain curve (AUPRG), for identifying lethal attempts (up to 3% for F1 and 32% for AUPRG), as compared with other models (mean F1: 0.81 for E-GONet, 0.78 for linear regression, and 0.80 for random forest; mean AUPRG: 0.73 for E-GONet, 0.41 for linear regression, and 0.69 for random forest). Conclusions The relationships among behaviors antecedent to suicide attempts can be used to understand the suicidal intent of individuals and help identify the lethality of potential suicide attempts. Such a model may be useful in prioritizing cases for preventive intervention.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3