A Machine Learning Approach to Predict the Outcome of Urinary Calculi Treatment Using Shock Wave Lithotripsy: Model Development and Validation Study

Author:

Moghisi ReihanehORCID,El Morr ChristoORCID,Pace Kenneth TORCID,Hajiha MohammadORCID,Huang JimmyORCID

Abstract

Background Shock wave lithotripsy (SWL), ureteroscopy, and percutaneous nephrolithotomy are established treatments for renal stones. Historically, SWL has been a predominant and commonly used procedure for treating upper tract renal stones smaller than 20 mm in diameter due to its noninvasive nature. However, the reported failure rate of SWL after one treatment session ranges from 30% to 89%. The failure rate can be reduced by identifying candidates likely to benefit from SWL and manage patients who are likely to fail SWL with other treatment modalities. This would enhance and optimize treatment results for SWL candidates. Objective We proposed to develop a machine learning model that can predict SWL outcomes to assist practitioners in the decision-making process when considering patients for stone treatment. Methods A data set including 58,349 SWL procedures performed during 31,569 patient visits for SWL to a single hospital between 1990 and 2016 was used to construct and validate the predictive model. The AdaBoost algorithm was applied to a data set with 17 predictive attributes related to patient demographics and stone characteristics, with success or failure as an outcome. The AdaBoost algorithm was also applied to a training data set. The generated model’s performance was compared to that of 5 other machine learning algorithms, namely C4.5 decision tree, naïve Bayes, Bayesian network, K-nearest neighbors, and multilayer perceptron. Results The developed model was validated with a testing data set and performed significantly better than the models generated by the other 5 predictive algorithms. The sensitivity and specificity of the model were 0.875 and 0.653, respectively, while its positive predictive value was 0.7159 and negative predictive value was 0.839. The C-statistics of the receiver operating characteristic (ROC) analysis was 0.843, which reflects an excellent test. Conclusions  We have developed a rigorous machine learning model to assist physicians and decision-makers to choose patients with renal stones who are most likely to have successful SWL treatment based on their demographics and stone characteristics. The proposed machine learning model can assist physicians and decision-makers in planning for SWL treatment and allow for more effective use of limited health care resources and improve patient prognoses.

Publisher

JMIR Publications Inc.

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Learning Framework for Kidney Stone Prediction;Lecture Notes in Electrical Engineering;2024

2. A Machine Learning Approach to Predict Poor Mental Health of Intimate Partner Violence Survivors;2023 Fifth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA);2023-07-05

3. Machine learning models for predicting the type and outcome of ureteral stones treatments;Advanced Biomedical Research;2023

4. Theranostic roles of machine learning in clinical management of kidney stone disease;Computational and Structural Biotechnology Journal;2023

5. Equity within AI systems: What can health leaders expect?;Healthcare Management Forum;2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3